
Caliper diameter of branched polymers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 2837

(http://iopscience.iop.org/0305-4470/17/14/027)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 07:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Gen. 17 (1984) 2837-2841. Printed in Great Britain 

Caliper diameter of branched polymers 

V Privmant, F Family$ and A MargolinaD 
t Baker Laboratory, Comell University, Ithaca, NY 14853, USA 
t Department of Physics, Emory University, Atlanta, C A  30322, USA 
8 Department of Chemical Engineering, Princeton University, Princeton, NJ 83544, USA 

Received 8 May 1984 

Abstract. We report analyses of exact numerical data for the spanning diameter of two- 
dimensional lattice animals up to size N = 17. Estimates of the exponent Y are consistent 
with previous studies. The leading correction to scaling has an exponent cr = v which does 
not result from irrelevant variable effects. Interpretation of this correction as a ‘surface’ 
term is proposed. 

The scaling form of the radius of gyration, RN,  of N-site lattice animals, which model 
branched polymers in the dilute limit (Lubensky and Isaacson 1979, Family 1980) is 

R N ~ ( R ~ ) ” 2 = a N Y ( 1  + b N - ’ + .  . .), as N+co, (1) 

(see e.g., Stauffer 1978, Peters er a1 1979). The second term in (1) represents the 
leading correction to scaling. Higher-order terms are usually higher powers of 1/  N. 
One has 

e = Yy, (2) 

where y is the absolute value of the leading irrelevant-variable renormalisation group 
eigen-exponent. Several recent numerical estimates of Y and 0 in two dimensions 
(Derrida and DeSeze 1982, Family 1980,1983, Guttmann 1982, Margolina er a1 1984a, b, 
Parisi and Sourlas 1981, Peters et a1 1979, Privman 1984) can all be plausibly sum- 
marised by the ranges 

Y = 0.641 f 0.005 (3) 
and 

e = 0.87 * 0.07. (4) 

A different quantity which measures cluster size is the caliper or spanning diameter, 
( D N ) ,  averaged over all N-site animals, defined as a length of a ‘projection’ of an 
animal on some fixed axis (Quinn et a1 1976, Harrison et al 1978, see also Redner and 
Yang 1982). One can also define moments (Oh), etc. Asymptotically, for large N, one 
should have 

( 5 )  (Oh) = consfant - Rh,  k = 1,2, . . . 
(see, e.g., Harrison et a1 1978), however, new corrections to scaling may be present in 
(0:). This property has been noticed by Margolina et al (1984a) who studied directed 
lattice animals. The motivation for studying caliper diameter moments is that there is 
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no natural definition of the isotropic radius of gyration for directed problems. Thus 
more complicated quantities, e.g., caliper diameters, have to be employed. These 
quantities may have new corrections to the leading scaling relation (5). In this note 
we report analysis of these corrections in the case of the isotropic, two-dimensional 
lattice animals. 

One may argue that the surface of a cluster (animal) contributes differently to ( D k )  
as compared to RN because the surface structure is averaged in calculating RN but 
not in (Dk) where the external points determine the size of a projection. If one 
conjectures, guided by the analogy with thermodynamic properties (Fisher 197 1 and 
1973, review by Binder 1983) that this contribution is of a relative magnitude 1/R, one 
has 

More detailed scaling arguments for the Rk-' terms can be proposed (Fisher and 
Privman, unpublished), however, strong assumptions on the behaviour of scaling 
functions are needed which cannot be established beyond a level of reasonable 
conjecture. Thus one cannot exclude the possibility of non-analytic power-law correc- 
tions. Presence of the Rk-" terms is also suggested by arbitrariness in defining the 
spanning diameter by say, a number of sites or bonds, etc. Different definitions of the 
spanning length, when averaged, will differ by terms of order Rk-l, Rk-', . . . . 

We will present numerical evidence (for k = 1,2) for the presence of the new term, 
N-", in 

(7) (Dk) = &Nk"( 1 + BkN-" + CkN-' + . . .), as N + w ,  

with (T close to v, see result (12) (relations (6) and ( 1 )  imply U =  v). 
In table 1 we list results of enumeration of ( D N )  and (0%) for N s 17, on the 

square lattice. Results for the number of animals, CN, are also listed (see Redelmeier 
(1981) for Ci8 , .  . . . , CZ4 and Guttmann (1982) for references to earlier enumeration 
studies). Values of ( R ? )  to have been calculated by Peters et a1 1979. 

Table 1. Values of C,(D,), C,(DL) and of C,, for N = 1,. . . , 17. 

N c,v ( D, ) CN ( D k) CN 
~~ 

I 0 0 1 
2 1 1 2 
3 6 8 6 
4 28 50 19 
5 120 266 63 
6 498 1308 216 
7 2 040 6 152 760 
8 8 299 28 121 2 725 
9 33 616 125 962 9 910 

10 135 801 555 873 36 446 
I 1  547 698 2 425 500 I35 268 
12 2 206 620 10 490 282 505 861 

1 903 890 13 8 884 486 45 050 386 
14 35 751 744 192 354 622 7 204 874 
15 143 885 980 817 389 682 27 394 666 
16 578 935 561 3 459 473 699 104 592 937 
17 2329 387 868 14 591 722 570 400 795 844 
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We analysed the ( D N )  and (0%) sequences by the method of Adler et a1 (1982, 
1983). This technique has been described in detail by Adler er a1 (1983); ( D N )  and 
(0%) are regarded as series expansion coefficients of the generating functions 

which must be singular at z = 1 but analytic for IzI < 1. Then v is estimated for various 
trial a values by forming several central Pad6 approximants, v [ ~ ’ ~ ] ( u ) ,  to a properly 
transformed generating function (see Adler et a1 (1983) for details), The curves 
vILIM1( a)  are expected to display a region of ‘confluence’ near the correct (v, a) .  

In figures 1 and 2 we plot several d L I M 1 (  a )  curves for ( D N )  and (D’,), respectively. 
The series studied here are relatively long; however, due to proliferation of correction 
terms in ( D k ) ,  the ranges of exponent estimates are relatively broad (see below) and 
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Figure 1. Curves of v [ ~ ’ ~ ] ( v )  for the (DN) sequence, calculated by using [6/9], [7/8], 
[8/71, [9/6], [6/8], [7/7], [8/6], [6/7] and [7/6] Pad6 approximants (see Adler et a1 1983). 
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Figure2. Curves of v [ ~ ’ ~ ] ( v )  for the ( D L )  sequence, calculated with the same Pad6 
approximants as in figure 1.  
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inaccurate as complared to results obtained, e.g., from the (shorter) ( R k )  series (see 
Peters et a1 1980, Margolina et a1 1984a). In figures 1 and 2 we observe broad confluence 
regions by considering the size of which one could propose 

U ,  = 0.625 ztO.010, U, = 0.49 k0.06, (9) 

v 2 =  0.630*0.015, u2 = 0.55 k 0.07, (10) 

where 1 and 2 denote results for (DN) and ( D k ) ,  respectively. We definitely seem to 
have U < f3 (see (4)), but the v estimates are only just consistent with the previous, 
more accurate results summarised by (3). Therefore the reliability of the error bars in 
(9) and (10) is rather questionable. 

In order to obtain more reliable estimates of U, we use the v values given in (3) 
to bias the estimates: thus we locate the range of values of U for which the estimates 
for U in (7) satisfy 

0.636s ~ [ ~ ’ ~ ] ( a )  S 0.646. (11) 

U ,  = 0.58 *0.07 and u2=0.59~Oo.07.  (12) 

The resulting U estimates are then 

These two ranges are consistent and again indicate U <  8. The equality of U and v is 
allowed by the upper limits of the U ranges here. However, it should be recalled that 
correction exponent estimates may possess systematic errors arising from the presence 
of the higher-order terms. 

In summary, we have presented numerical evidence for new corrections to scaling 
in ( D k ) ,  with an exponent close to or actually equal to v which may be interpreted 
as a simple ‘surface contribution’. 
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